# 智能串口数据交换器 SS-430B

产品手册

V 2.9 Rev A



# 上海泗博自动化技术有限公司 SiboTech Automation Co., Ltd.

技术支持热线: 021-3126 5138 E-mail: support@sibotech.net



# 目 录

| —, | 引言                  | 3    |
|----|---------------------|------|
|    | 1.1 关于说明书           | 3    |
|    | 1.2 版权信息            | 3    |
|    | 1.3 相关产品            | 3    |
|    | 1.4 术语              | 3    |
|    | 1.5 更改记录            | 3    |
| _, | 产品概述                | 5    |
|    | 2.1 产品功能            |      |
|    | 2.2 产品特点            |      |
|    | 2.3 技术指标            |      |
| 三、 | 产品外观                |      |
|    | 3.1 产品外观            |      |
|    | 3.2 指示灯             |      |
|    | 3.3 配置开关            | 8    |
|    | 3.4 通信端口            |      |
|    | 3.4.1 电源接口          | 8    |
|    | 3.4.2 串口 I          |      |
|    | 3.4.3 串口 II         |      |
|    | 3.4.4 串口 III        |      |
|    | 3.4.5 串口 IV         |      |
|    | 3.4.6 RS-485 端口技术规格 |      |
| 四、 | 使用方法                | . 12 |
|    | 4.1 配置模块            | . 12 |
|    | 4.2 软件配置            | . 12 |
|    | 4.3 运行              | . 13 |
|    | 4.3.1 数据交换          | .13  |
|    | 4.3.2 自定义协议         |      |
|    | 4.3.3 通用模式          | .17  |
| 五、 | 配置前注意事项             | .22  |
|    | 5.1 用户界面            | .23  |
|    | 5.2 设备视图操作          | .24  |
|    | 5.2.1 设备视图界面        | .24  |
|    | 5.2.2 设备视图操作方式      | .24  |
|    | 5.2.3 设备视图操作种类      | .25  |
|    | 5.3 配置视图操作          | .26  |
|    | 5.3.1 子网配置视图界面      | .26  |
|    | 5.3.2 节点配置视图界面      | .32  |
|    | 5.3.3 命令配置视图界面      | .33  |
|    | 5.3.4 注释视图          | .36  |
|    | 5.4 冲突检测            | .37  |
|    | 5.4.1 命令列表操作        | .38  |





# User Manual

| 5.4.2 内存映射区操作  |    |
|----------------|----|
| 5.5 硬件通讯       | 39 |
| 5.5.1 串口配置     |    |
| 5.5.2 上载配置     | 40 |
| 5.5.3 下载配置     |    |
| 5.6 加载和保存配置    | 41 |
| 5.6.1 保存配置工程   |    |
| 5.6.2 加载配置工程   | 42 |
| 5.7 EXCEL 文档输出 |    |
| 7、安装           |    |
| 6.1 机械尺寸       |    |
| 6.2 安装方法       |    |
| 二、运行维护及注意事项    |    |
| \、修订记录         |    |
| 付录:Modbus 协议   |    |





# 一、引言

### 1.1 关于说明书

本说明书描述了网关 SS-430B 的各项参数,具体使用方法和注意事项,方便工程人员的操作运用。在使用网关之前,请仔细阅读本说明书。

# 1.2 版权信息

本说明书中提及的数据和案例未经授权不可复制。

SiboTech® 是上海泗博自动化技术有限公司的注册商标。

# 1.3 相关产品

本公司其它相关产品包括:

MD-210: Modbus/DeviceNet 网关

PM-160: Modbus/PROFIBUS DP 网关

获得以上两款产品的说明,请访问公司网站 www.sibotech.net,或者拨打技术支持热线:021-3126 5138。

# 1.4 术语

Modbus: MODICON 公司设计的一种通信协议

RS485、RS422: 串口的硬件规范 SS-430B: 智能串口数据交换器 RS-25: RS232/RS485 转换器

### 1.5 更改记录

- ◆ 2015 年 07 月修订 Rev2.7:
- [1] 修改串口支持的标准仅为 RS485;
- [2] 技术支持热线更改。





#### **User Manual**

- ◆ 2009 年 10 月修订 Rev1.2:
- [1] 删除旧的网站地址;
- [2] 增加自定义协议报文示例。
- ◆ 2010 年 03 月修订 Rev2.0:
- [1] 增加协议类型。
- 注:原有协议类型: Modbus 主站、Modbus 从站、自定义现有协议类型: Modbus 主站、Modbus 从站、自定义、通用模式通用模式可分为通用模式-问答式和通用模式-接收式
- ◆ 2010 年 06 月修订 Rev2.1:
- [1] 使用 GT-123 配置描述修改为使用 SS-123 配置,修改相关截图。





# 二、产品概述

### 2.1 产品功能

- 1. 突破 Modbus 主站只能有一个的限制,可以使两到三个 Modbus 主站同时访问一段 Modbus 总线(SS-430B 两或三个端口配置为从站,各连接一个主站;其它从站设备连接于第四个端口);
  - 2. 整合多个 Modbus 协议的设备, 使多达近百个 Modbus 设备如同一个设备那样被访问;
  - 3. 无需 PLC、PC 等主站设备,即可使 Modbus 从站设备互相交换数据;
  - 4. 无需开发 Modbus 协议,即可使用简单的协议轻松连接 Modbus 设备。

#### 2.2 产品特点

▼应用广泛:凡具有 RS485/RS422 接口的设备都可以使用本产品实现数据的交换和传递。如:具有 RS485 接口的变频器、电机启动保护装置、智能高低压电器、电量测量装置、各种变送器、智能现场测量设备、仪表、PLC 及 PC 等等。

▼配置简单:用户不必了解 Modbus 技术细节,只需参考本手册,根据要求使用网关配置软件 SS-123 可轻松完成 SS-430B 的配置,不需要复杂编程,即可在短时间内实现连接通信

### 2.3 技术指标

- [1] SS-430B 具有四个串口,支持 RS485 标准。
- [2] SS-430B 支持的协议类型: Modbus 主站、Modbus 从站、自定义协议以及通用模式(接收式、问答式)。
- [3] 串口参数:
  - ① 工作方式: 半双工;
  - ② 波特率: 300、600、1200、2400、4800、9600、19.2K、38.4K、57.6、115.2Kbps 可选;
  - ③ 数据位: 8位:
  - ④ 校验位: 无、奇、偶、标志、空格可选;
  - ⑤ 停止位: 1、2位可选。

#### [4] Modbus 主站:

- ① 支持的功能码: 01H、02H、03H、04H、05H、06H、0FH、10H 号功能;
- ② 支持的格式: RTU 格式和 ASCII 格式;





#### **User Manual**

- ③ 具有的功能: 写命令连续输出、禁止输出或逢变输出的可选择功能;
- ④ 每个子网最多可配置 48 条 Modbus 命令。

#### [5] Modbus 从站:

- ① 支持的功能码: 03H、04H、06H、10H 号功能;
- ② 支持的格式: RTU 格式和 ASCII 格式;
- ③具有 Modbus 主站读取网关输入数据的功能码 03 或 04 可选功能;
- ④具有寄存器首地址可设置功能。

#### [6] SS-430B 数据输入/输出数量:

- ① Input Bytes + Output Bytes  $\leq$  2KBytes;
- ② Max Input Bytes ≤ 1KBytes;
- ③ Max Output Bytes ≤ 1KBytes;
- [7] 供电: 24VDC(11V~30V), <140mA(DC24V);
- [8] 工作环境温度: -20~60℃; 工作环境湿度: 5 to 95% (无凝露);
- [9] 内置静电防护: 15 KV ESD; 通信端口隔离: 3KV;
- [10] 机械尺寸: 40mm (宽) ×125mm (高) ×110mm (深);
- [11] 安装: 35mm 导轨;
- [12] 防护等级: IP20;



# 三、产品外观

# 3.1 产品外观

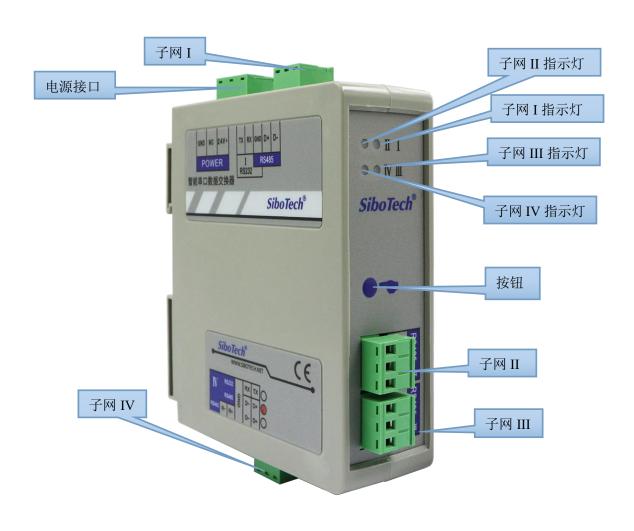
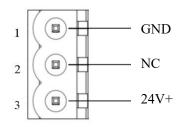



图 1 产品外观



#### USEI Mai

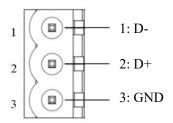
3.2 指示灯


#### 指示灯 状态 含义 常灭 没有数据通信 仅红灯闪烁 正在发送数据 仅绿灯闪烁 正在接收数据 (串口1) 红绿交替闪烁 同时在接收与发送数据 常灭 没有数据通信 仅红灯闪烁 正在发送数据 II 正在接收数据 仅绿灯闪烁 (串口2) 红绿交替闪烁 同时在接收与发送数据 没有数据通信 常灭 仅红灯闪烁 正在发送数据 III 仅绿灯闪烁 正在接收数据 (串口3) 红绿交替闪烁 同时在接收与发送数据 没有数据通信 常灭 仅红灯闪烁 正在发送数据 IV 正在接收数据 仅绿灯闪烁 (串口4) 红绿交替闪烁 同时在接收与发送数据

### 3.3 配置开关

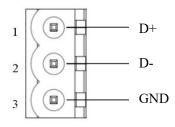
SS-430B 上电后双击 SET 按钮,进入配置模式,配置模式下四个串口指示灯都不亮的。用户可以通过四个串口中的任意一个串口将 SS-430B 连接到 PC (如果用 RS485 需使用转换器连接 PC,比如 USB 转 RS485),并使用配置软件 SS-123 配置 SS-430B。

# 3.4 通信端口


# 3.4.1 电源接口



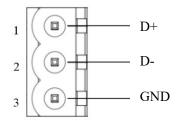



| 引脚 | 功能          |  |
|----|-------------|--|
| 1  | GND,电源24V负  |  |
| 2  | NC, 无连接     |  |
| 3  | 24V+,直流24V正 |  |

# 3.4.2 串口 I

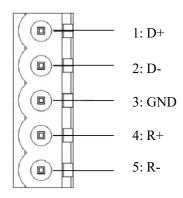


| 引脚 | 功能                |  |
|----|-------------------|--|
| 1  | D-,连接用户设备RS485数据- |  |
| 2  | D+,连接用户设备RS485数据+ |  |
| 3  | GND               |  |


# 3.4.3 串口 II



| 引脚 | 功能                 |  |
|----|--------------------|--|
| 1  | D+,连接用户设备RS485的数据+ |  |
| 2  | D-,连接用户设备RS485的数据- |  |
| 3  | GND                |  |




# 3.4.4 串口 III



| 引脚 | 功能                 |  |
|----|--------------------|--|
| 1  | D+,连接用户设备RS485的数据+ |  |
| 2  | D-,连接用户设备RS485的数据- |  |
| 3  | GND                |  |

# 3.4.5 串口 IV



| 引脚 | 功能                    |  |
|----|-----------------------|--|
| 1  | D+, RS485数据正/RS422发送正 |  |
| 2  | D-,RS485数据负/RS422发送负  |  |
| 3  | GND                   |  |
| 4  | R+, RS422接收正          |  |
| 5  | R-, RS422接收负          |  |





# 3.4.6 RS-485 端口技术规格

站点数:每分段32个站(不带中继),可多到127个站(带中继);

连接方式: 3 针可插拔端子

注: 总线的最远两端可配置一个总线终端电阻 120Ω 1/4W 以减少信号反射。



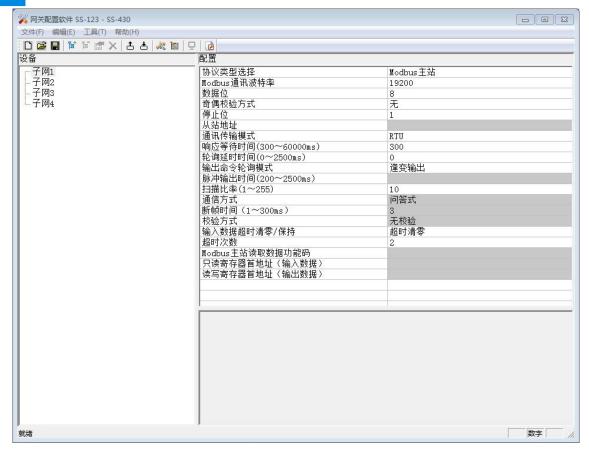
# 四、使用方法

# 4.1 配置模块

使用 SS-430B 的几个步骤:

- a. 按照说明书完成硬件接线;
- b. 将四个串口中的一个串口连接至 PC 串口, 若全部串口为 RS485, 则需要使用 USB 转 RS485 转换器;
- c. 给 SS-430B 上电, 然后**双击** SET 按钮, SS-430B 进入配置模式, 此时四个串口指示灯都不亮;
- d. 使用网关配置软件 SS-123 对 SS-430B 进行配置,配置下载完成后关闭 SS-430B 电源:
- e. 给 SS-430B 重新上电,即进入运行状态,新配置生效;
- f. 当网关的一端配置为 Modbus 从站时,和 Modbus 主站连接,主站可在配置软件中选 03(Modbus 寄存器起始地址 40001)或 04(Modbus 寄存器起始地址 30001)功能码读取数据,寄存器的起始地址 也可手动设置。

### 4.2 软件配置


配置模块时需要配置软件 SS-123。SS-123 需要从泗博官网(www.sibotech.net)下载获取。

用户使用配置软件 SS-123 可以轻松完成 SS-430B 的配置,包括通信波特率、奇偶校验、停止位、通信协议选择及协议参数等,并可对网关内存映射数据进行冲突检测。

安装完成后,双击软件图标即可进入软件主界面:

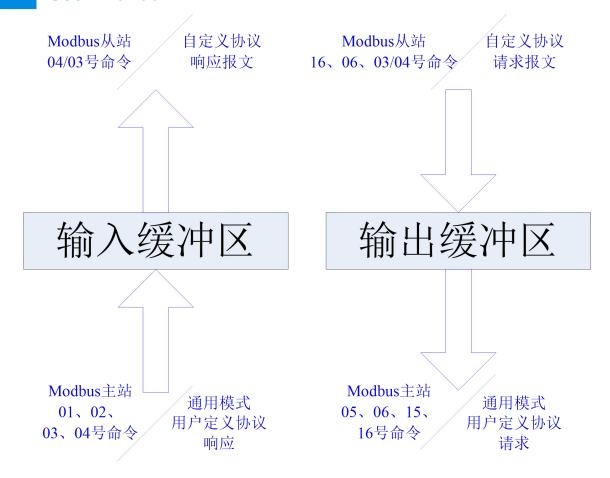






网关配置软件 SS-123 的详细使用方法详见第五章节。

# 4.3 运行


# 4.3.1 数据交换

SS-430B 的多串口之间的数据转换通过"映射"关系来建立。在 SS-430B 中有两块数据缓冲区,一块是输入缓冲区(1K 字节),另一块是输出缓冲区(1K 字节)。

Modbus 主站读取命令将读取的数据写入到网络输入缓冲区,供 Modbus 从站或自定义从站侧读取。Modbus 主站写寄存器类的命令从输出缓冲区取数据,通过写命令输出到相应的 Modbus 设备。如下图所示:







输入缓冲区地址范围: 0x0000~0x03FF;

输出缓冲区地址范围: 0x4000~0x43FF, 0x0000~0x03FF (本地数据交换);

输入输出缓冲区起始地址:

|                  | 输入缓冲区       | 输出缓冲区       |
|------------------|-------------|-------------|
| 内存映射起始地址         | 0000Н       | 4000Н       |
| Modbus 从站 PLC 地址 | 30001/40001 | 40001/30001 |
| Modbus 从站协议地址    | 0000Н       | 0000Н       |

每个子网都可配置 48 条 Modbus 命令,每条命令可以读取一组连续的 Modbus 寄存器。映射关系在配置模式下用户可自行组态。





# 4.3.2 自定义协议

#### (1) 定义

用户设备作为通信的发起方,在请求帧中发送输出数据。

SS-430B 作为通信的响应方, 在响应帧中发送输入数据。

通信为点对点。

请求帧中相邻字节间的时间间隔不能超过 50ms, 否则 SS-430B 将放弃这帧数据。

每条有效请求帧 SS-430B 应在 200ms 内开始作出响应。

支持通信波特率范围  $300\sim115200$ bps,8 位数据位,奇偶校验位(无、奇、偶、标志、空格),1 或 2 位停止位。

#### (2) 通信报文格式

#### ① 请求帧报文格式

[输出数据长度][输出数据地址高字节][输出数据地址低字节][输入数据长度][输入数据地址高字节][输入数据地址低字节]*[输出数据1]* ...... *[输出数据n]* [校验]。

数据个数 n 等于输出数据长度。

#### ② 响应帧报文格式

正确响应:

[输入数据长度] [输入数据地址高字节] [输入数据地址低字节] [输入数据 1] ...... [输入数据 n] [校验]。数据个数 n 等于输入数据长度。

错误响应:

[0x00] [0xFF] [0xFF] [错误代码] [校验]

#### (3) 校验方式

所有数据的8位累加和,忽略溢出位。即:

[报文校验码] = [输出数据长度] + [输出数据地址高字节] + [输出数据地址低字节] + [输入数据长度] + [输入数据地址高字节] + [输入数据地址低字节] + [输出数据 1] + ...... + [输出数据 n]。

[响应校验码] = [输入数据长度] + [输入数据地址高字节] + [输入数据地址低字节] + [输出数据 1] + ..... + [输出数据  $\mathbf{n}$ ]。

# (4) 错误代码含义





| 错误代码                    | 含义                 |  |
|-------------------------|--------------------|--|
| 0x01                    | 输出数据长度错误           |  |
| 0x02                    | 累加和校验错误            |  |
| 0x03                    | 输出数据地址错误或输出数据区域不合法 |  |
| 0x04 输入数据地址错误或输入数据区域不合法 |                    |  |

#### (5) 报文示例

若读入输入数据50个字节,输出数据32个字节。

现在用户要输出数据为全 0, 并读取所有输入数据, 示例如下:

[以下均为16进制数]

请求帧报文:

[20] [40 00] [32] [00 00] [00.....00] [92] |输出数据长度|输出起始地址|要读取的输入数据长度|输入起始地址|32个输出数据|校验(累加和)|

响应帧报文:

[00......00] [92] [00 00] [32] |输入数据长度|输入起始地址|50个输出数据|校验(累加和)|

这里的输出地址和输入地址,是 SS-430B 内存映射地址。





### 4.3.3 通用模式

#### (1) 定义

SS-430B 通用模式协议报文可以根据用户自由设定,解决了 Modbus 标准协议和 Modbus 非标准协议设备 之间的通信问题。在通用模式下有两种工作方式:问答式、接收式。问答式工作机制与 Modbus 通信协议相似,采用请求响应的方式通信,每个子网在通用模式下最多可配置 30 条命令;接收式只接收存储数据,接收完数据后不作任何回应,例如和条形码扫描器设备通信等。

#### (2) 通用模式-问答式

使用通用模式-问答式之前用户需要配置通用模式-问答式的请求报文和响应报文。

帧头: 16 进制输入, 最大字节数 8

数据: 16 进制输入,每个选项占两个字节

常量: 16 进制输入, 最大字节数 8

校验:无校验、CRC校验、LRC校验、和校验

帧尾: 16 进制输入,最大字节数 3

在 RTU 格式下发送顺序: 帧头、数据、常量、校验、帧尾在 RTU 格式下接收顺序: 帧头、数据、常量、校验、帧尾

在 ASCII 格式下发送顺序: 帧头、常量、数据、校验、帧尾 在 ASCII 格式下接收顺序: 帧头、常量、数据、校验、帧尾

#### 例如配置 Modbus 命令, RTU 传输格式:

#### 请求:

从站地址:01功能码:03寄存器地址 H:00寄存器地址 L:00数据数量 H:00数据数量 L:02





#### **User Manual**

CRC 校验 H: C4

CRC 校验 L: 0B

报文: 01 03 00 00 00 02 C4 0B

响应:

从站地址: 01

功能码: 03

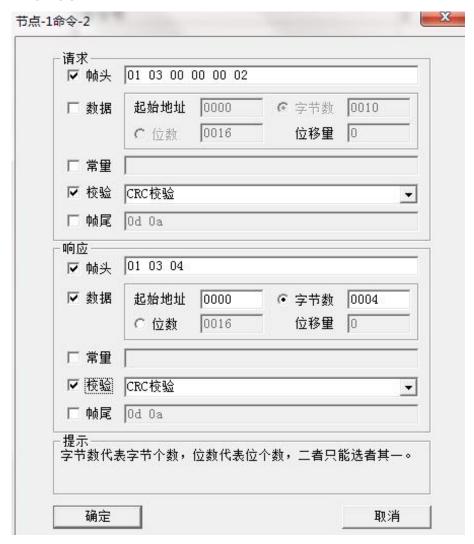
数据个数: 04

数据: 00

数据: 00

数据: 00

数据: 00


CRC 校验 H: FA

CRC 校验 L: 33

报文: 01 03 04 00 00 00 00 FA 33

则在 SS-123 中的命令配置如下图:





注:在RTU传输格式下,校验支持:无校验、CRC校验、和校验

#### 例如配置 Modbus 命令,ASCII 传输格式:

: (3A)

地址

功能代码

数据数量

数据 1

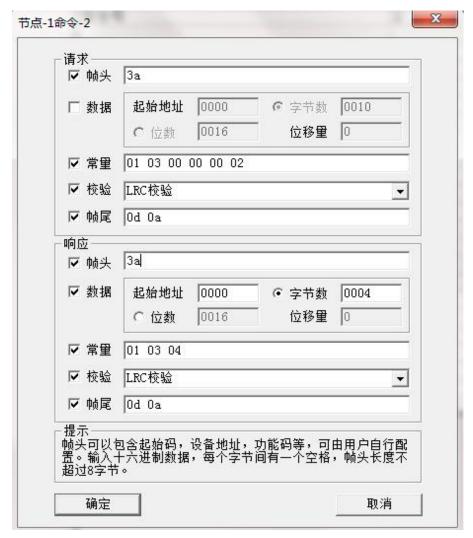
. . . . .

数据 n





#### **User Manual**


LRC 高字节

LRC 低字节

回车(0D)

换行(0A)

则在 SS-123 中的命令配置如下图:



注:在 ASCII 传输格式下,校验支持:无校验、LRC 校验、和校验

### (3) 通用模式-接收式

通用模式-接收式只接收数据不作应答,可用于接收条形码扫描设备的数据,通用模式-接收式每个子网有 16组数据接收缓存区,每组接收数据缓存区大小为255个字节。

配置界面如下图:

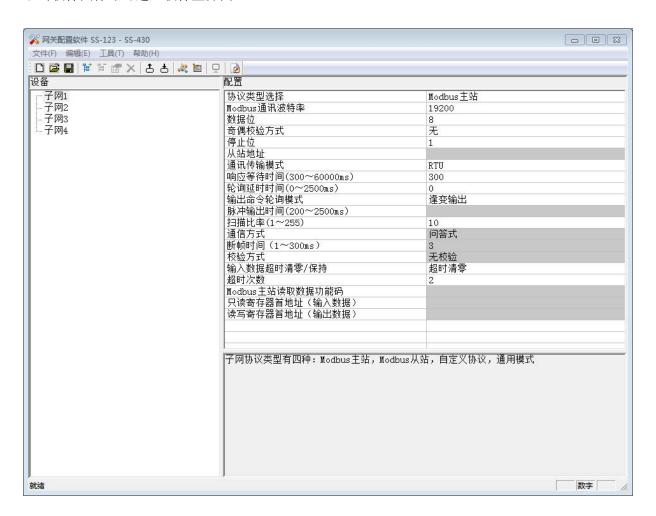


| 协议类型选择              | 通用模式  |
|---------------------|-------|
| Modbus通讯波特率         | 19200 |
| 数据位                 | 8     |
| 奇偶校验方式              | 无     |
| 停止位                 | 1     |
| 从站地址                |       |
| 通讯传输模式              | RTU   |
| 响应等待时间(300~60000ms) | 300   |
| 轮询延时时间(0~2500ms)    | 0     |
| 输出命令轮询模式            | 逢变输出  |
| 脉冲输出时间(200~2500ms)  |       |
| 扫描比率(1~255)         | 10    |
| 通信方式                | 问答式   |
| 断帧时间(1~300ms)       | 3     |
| 校验方式                | 无校验   |
| 输入数据超时清零/保持         | 超时清零  |
| 超时次数                | 2     |
| Modbus主站读取数据功能码     | ·     |
| 只读寄存器首地址 (输入数据)     |       |
| 读写寄存器首地址(输出数据)      |       |

通信实现方法: SS-430B 一个子网配置为通用模式-接收式,连接到条形码扫描设备上; SS-430B 另一个子网配置为 Modbus 从站,连接到带 Modbus 主站的网关上。Modbus 主站用 04H/03H 功能码读取从寄存器 0 开始的数据,寄存器 0 为事物序列号,每次读取一条新的报文,事务序列号加 1,事务序列号从 0~255 循环。寄存器 1~寄存器 n 为接收条形码扫描设备的数据,具体读取的数据个数由 Modbus 主站配置来决定,最大有效字节数为 255。

#### 连接示意图如下:






# 五、配置前注意事项

SS-123 是一款基于 Windows 平台,用来配置 SS-430B 相关参数及命令的配置软件。

本说明书描述了网关配置软件的具体使用方法和注意事项,方便工程人员的操作运用。在使用本软件前,请仔细阅读本说明书。

本软件通过 SS-430B 的 RS485 接口使用 USB 转 RS485 和 PC 连接通讯,上载或下载配置文件。 双击软件图标即可进入软件主界面:








# 5.1 用户界面

SS-123 的界面包括:标题栏、菜单栏、工具栏、状态栏、设备版块、配置版块和注释版块。

备注: 在该软件中, 所有的灰色部分为不可更改项。



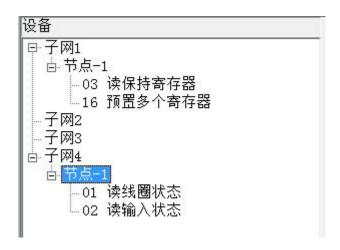
#### 工具栏:

工具栏如下图所示:



从左至右的功能分别是:新建、打开、保存、增加节点、删除节点、增加命令、删除命令、上载配置信息、下载配置信息、冲突检测、Excel 配置文档输出。

□新建:新建一个配置工程






- ☑打开: 打开一个配置工程
- ■保存:保存当前配置
- 增加节点:增加一个 Modbus 从站节点
- 階刪除节点:刪除一个 Modbus 从站节点
- □ 增加命令:增加一条 Modbus 命令
- ➤删除命令:删除一条 Modbus 命令
- △ 上载配置信息:将配置信息从模块中读取上来,并且显示在软件中
- ▲ 下载配置信息: 将配置信息从软件中下载到模块
- ▲ 冲突检测: 检测配置好的命令在网关内存数据缓冲区中是否有冲突
- Excel 配置文档输出:将当前配置输出到本地硬盘,以.xls 文件格式保存

### 5.2 设备视图操作

### 5.2.1 设备视图界面



# 5.2.2 设备视图操作方式

对于设备视图,支持如下三种操作方式:编辑菜单、编辑工具栏和右键编辑菜单。









# 5.2.3 设备视图操作种类

- 1)增加节点操作:在子网或已有节点上单击鼠标左键,选中该节点,然后执行增加节点操作。在子网下增加一个名字为"新节点"的节点。
- 2) 删除节点操作:单击鼠标左键,选中待删除节点,然后执行删除节点操作。该节点及其下所有命令全部删除。
- 3)增加命令操作:在节点上单击鼠标左键,然后执行增加命令操作,为该节点添加命令。弹出如下选择命令对话框,供用户选择,如下图所示:

目前支持命令号: 01, 02, 03, 04, 05, 06, 15, 16 号命令 选择命令: 双击命令条目



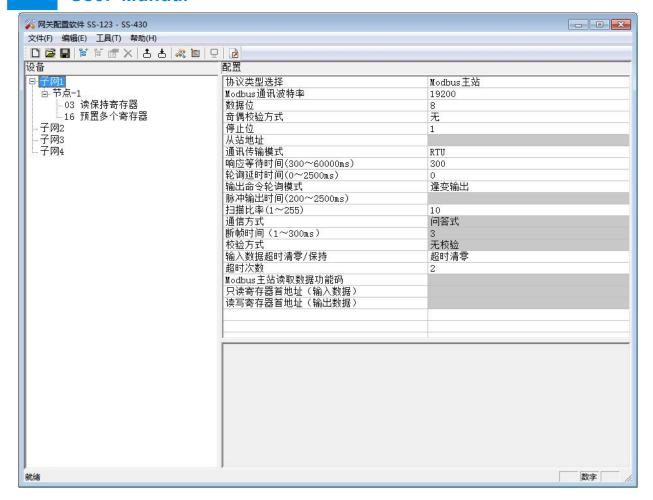


- 4) 删除命令操作: 单击鼠标左键, 选中待删除命令, 然后执行删除命令操作。该命令即被删除。
- 5) 节点重命名操作:在需要重命名的节点上单击鼠标左键,显示编辑状态,可对节点重命名。

# 5.3 配置视图操作

### 5.3.1 子网配置视图界面

#### 1) 协议类型选择 Modbus 主站


可配置参数为:

Modbus 通讯波特率、数据位、奇偶校验方式、停止位、通讯传输模式、响应等待时间、轮询延时时间、输出命令轮询模式、扫描比率。

配置视图界面显示如下:







Modbus 通讯波特率: 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200bps 可选数据位: 8位

奇偶校验方式: 无、奇、偶、标记、空格可选

停止位: 1、2 可选

通讯传输模式: RTU、ASCII 可选

响应等待时间: 当 Modbus 主站发送命令后,等待从站响应的时间,范围: 300~6000ms

轮询延时时间:一条 Modbus 命令发完并收到正确响应或响应超时之后,发送下一条 Modbus 命令之前,延迟的时间,范围:  $0\sim2500\mathrm{ms}$ 

输出命令轮询模式:

Modbus 写命令(输出命令),有四种输出模式:连续输出,禁止输出,逢变输出,脉冲输出连续输出:与 Modbus 读命令输出方式相同,根据扫描比率进行扫描输出





#### **User Manual**

禁止输出:禁止输出 Modbus 写命令

逢变输出:输出数据有变化时,输出写命令,并在接收到正确响应后停止输出

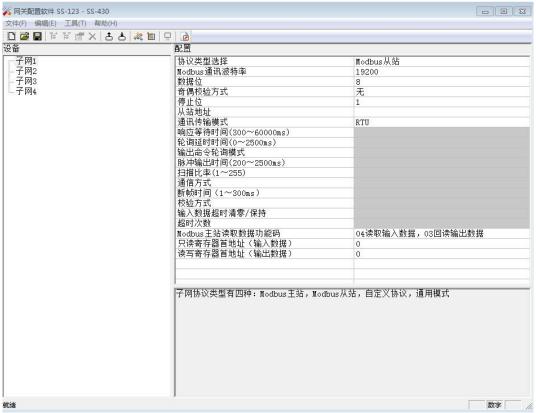
脉冲输出:按照脉冲周期,输出写命令

扫描比率:慢速扫描周期与快速扫描周期的比值,如果该值设为10,那么快速扫描命令发出10次,慢速扫描命令发出1次。

输入数据超时清零/保持:当前子网 Modbus 读命令超时达到设置的次数,对应的输入数据是否被清零。 选择"超时清零", Modbus 读命令超时达到设置次数,此条读命令对应的输入数据被清零;选择"保持", Modbus 读命令超时或错误,此条读命令对应的输入数据保持最后一次接收到的正确数据。

超时次数: 当"输入数据超时清零/保持"选中"超时清零"后有效。输入范围 2~254, 默认值 2。

#### 2) 协议类型选择 Modbus 从站


可配置参数为:

Modbus 通讯波特率、数据位、奇偶校验方式、停止位、从站地址、通讯传输模式。 配置视图界面显示如下:





#### **User Manual**



Modbus 通讯波特率: 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200bps 可选数据位: 8位

奇偶校验方式: 无、奇、偶、标记、空格可选

停止位: 1、2 可选

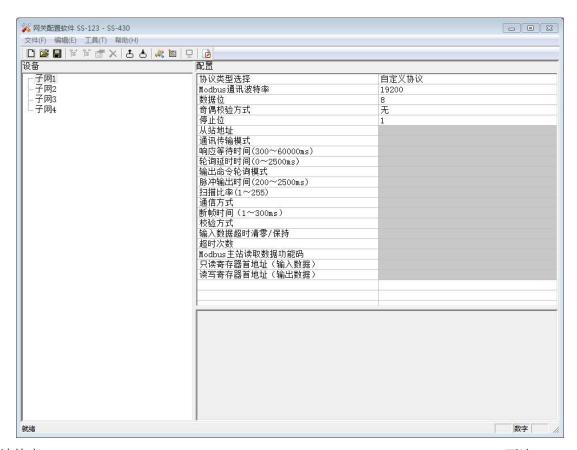
从站地址: 范围是 0~247

通讯传输模式: RTU、ASCII 可选

Modbus 主站读取数据功能码: "04 读取输入数据,03 回读输出数据"、"03 读取输入数据,04 回读输出数据"可选

只读寄存器首地址 (输入数据): 范围 0-65023 读写寄存器首地址 (输出数据): 范围 0-65023

#### 3) 协议类型选择自定义协议


可配置参数为:

通讯波特率、数据位、奇偶校验方式、停止位。





配置视图界面显示如下:



通讯波特率: 300,600,1200,2400,4800,9600,19200,38400,57600,115200bps可选

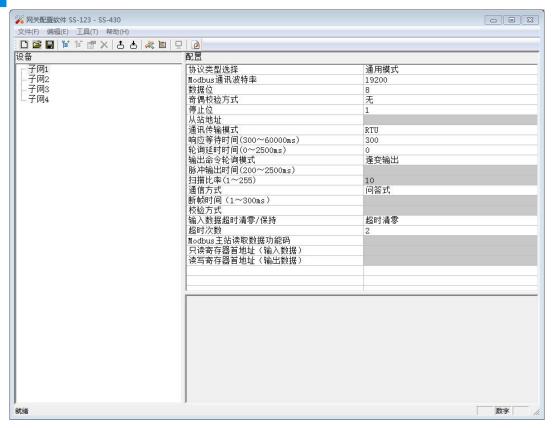
数据位:8位

奇偶校验方式: 无、奇、偶、标记、空格可选

停止位: 1、2 可选

#### 4) 协议类型选择通用模式

可配置参数为:


通讯波特率、数据位、奇偶校验方式、停止位、通信传输模式、响应等待时间、轮询延时时间、输出命 令轮询模式、通信方式、断帧时间、校验方式。

配置视图界面显示如下:





#### **User Manual**



通讯波特率: 300,600,1200,2400,4800,9600,19200,38400,57600,115200bps 可选

数据位:8位

奇偶校验方式: 无、奇、偶、标记、空格可选

停止位: 1、2 可选

通讯传输模式: RTU、ASCII 可选,通信方式为问答式有效

响应等待时间: 当 Modbus 主站发送命令后,等待从站响应的时间,范围: 300~60000ms,通信方式为问 答式有效

轮询延时时间:一条 Modbus 命令发完并收到正确响应或响应超时之后,发送下一条 Modbus 命令之前, 延迟的时间,范围: 0~2500ms,通信方式为问答式有效

输出命令轮询模式: (通信方式为问答式时有效)

写命令(请求中带有数据的命令),有三种输出模式:连续输出,禁止输出,逢变输出

连续输出:与读命令(请求中不带有数据的命令)输出方式相同

禁止输出:禁止输出写命令

逢变输出:输出数据有变化时,输出写命令,并在接收到正确响应后停止输出



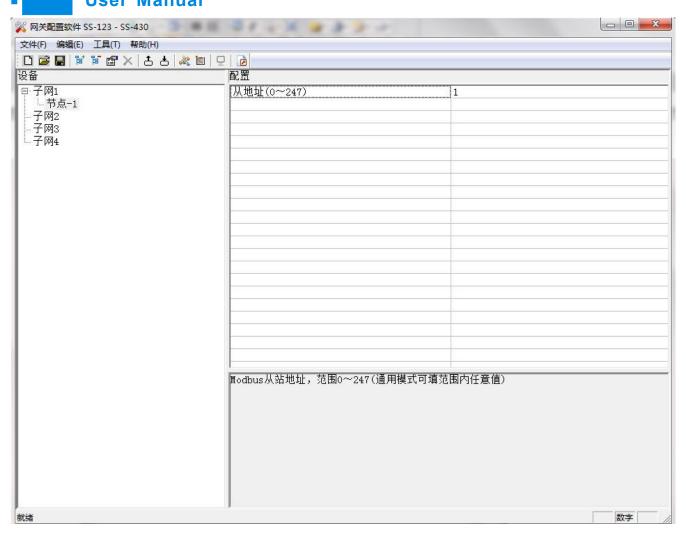


通信方式:问答式、接收式可选,问答式指采用主站询问从站应答的方式通信,与 Modbus 主站通信方式 类似,接收式指接收数据,不作应答。

断帧时间: 当接收完最后一个字节的时候开始计时,若超过这个时间,则接收一帧完毕,准备接收新的一帧。1~300ms,通信方式为接收式有效。

校验方式:无校验、CRC校验、和校验可选,通信方式是接收式时有效。

输入数据超时清零/保持:当前子网读命令超时达到设置的次数,对应的输入数据是否被清零。选择"超时清零",读命令超时达到设置次数,此条读命令对应的输入数据被清零;选择"保持",读命令超时或错误,此条读命令对应的输入数据保持最后一次接收到的正确数据。


超时次数: 当"输入数据超时清零/保持"选中"超时清零"后有效。输入范围 2~254, 默认值 2。

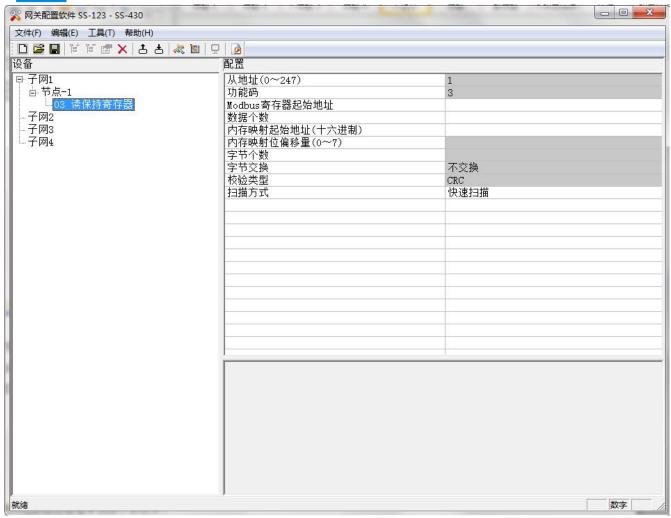
# 5.3.2 节点配置视图界面

在"Modbus 主站"模式下,在设备视图界面,单击新建的节点,配置视图界面显示如下:








# 5.3.3 命令配置视图界面

在设备视图界面,协议类型选择 Modbus 主站时,单击新建的命令,配置视图界面显示如下:





#### **User Manual**



Modbus 寄存器起始地址: Modbus 从站设备中寄存器/开关量/线圈等起始地址,范围是 0~65535 注: 配置软件 GT-123 中该条目指的是协议地址,当用户输入 PLC 地址时,确定后会自动弹出如下图说示的对话框,点击确定后,用户输入的 PLC 地址会被转换成协议地址。







PLC 地址与对应的协议地址举例如下表所示:

| 命令    | PLC 地址举例    | 对应的协议地址     |
|-------|-------------|-------------|
| 线圈状态  | 00001~00010 | 00000~00009 |
| 输入状态  | 10001~10010 | 00000~00009 |
| 保持寄存器 | 40001~40010 | 00000~00009 |
| 输入寄存器 | 30001~30010 | 00000~00009 |

例如: 当配置的 Modbus 命令为 03H(读保持寄存器),当用户在这一条目中(Modbus 寄存器起始地址)输入 40001,确定后会弹出上图所示的对话框,当点击确定后,输入的 PLC 地址 40001 会被转换成协议地址 0。

数据个数: Modbus 从站设备中寄存器/开关量/线圈的个数

内存映射起始地址(十六进制): 在模块内存缓冲区中数据的起始地址

数据在模块内存中映射的地址范围

读命令: 0x0000~0x03FF

写命令: 0x4000~0x43FF

写命令作为本地数据交换也可使用区域: 0x0000~0x03FF

内存映射位偏移量(0~7):对于位操作指令,起始位在字节中的位置,范围是0~7

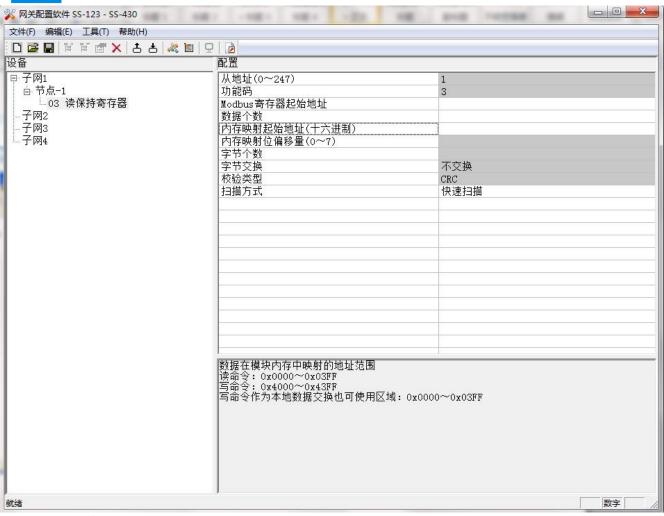
字/字节映射:有三种类型:全字,高字节,低字节。每个寄存器有2个字节。全字映射 是将寄存器的2个字节全部放入网关内存缓冲区中;高字节映射 是只将寄存器的高字节放入网关内存缓冲区中;低字节映射 是只将寄存器的低字节放入网关内存缓冲区中。

扫描方式:有两种扫描方式,快速扫描和慢速扫描,适应用户对不同的命令的快速扫描或慢速扫描的要求。慢速扫描等于快速扫描乘以扫描比率(在"子网"设置界面中设置)

在设备视图界面,协议类型选择"通用模式"时,双击新建的命令(通信方式为问答式),配置视图界面显示如下:



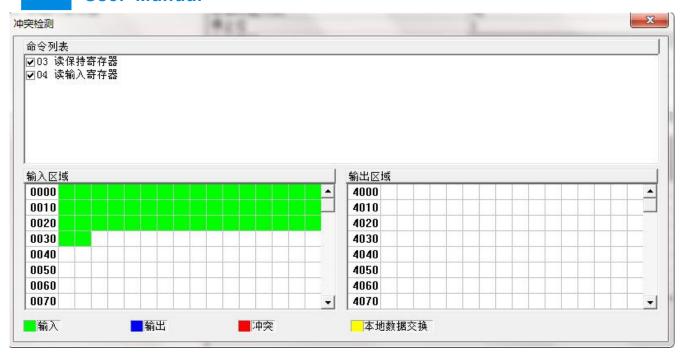



采用通用模式-问答式情况下,命令的配置方法请见 4.3.3 章节的描述。

## 5.3.4 注释视图

注释视图显示相应配置项的解释。如配置内存映射起始地址时,注释视图显示如下:

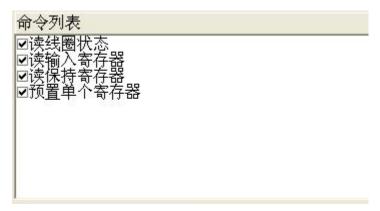







## 5.4 冲突检测

用于检测"内存映射数据"是否有冲突,若发现冲突的情况,可及时做调整。视图显示如下:






注: 此功能暂时不支持检测通用模式的命令!

## 5.4.1 命令列表操作

在命令列表视图显示所有配置的命令,每条命令前的选中框,用于在内存映射区检查该条命令所占内存映射位置。单击某条命令,使选中框打勾,在内存映射区会显示相应命令所占空间位置,再次单击该命令, 去掉选中框勾,命令不在映射区显示所占空间。该功能可用于命令间内存映射区的冲突检测。





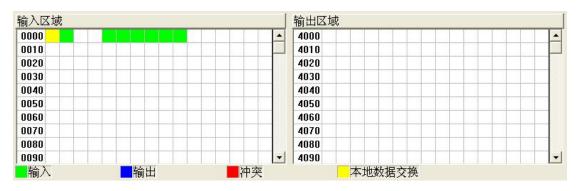


## 5.4.2 内存映射区操作

内存映射区分输入区域和输出区域。

输入映射地址从 0x0000~0x3FFF;

输出映射地址从 0x4000~0x7FFF, 0x0000~0x03FF (本地数据交换);


每个方格代表一个字节地址。

绿色: 读命令在输入映射区显示, 无冲突时呈绿色;

黄色: 写命令当地址映射区位于输入区, 无冲突时呈黄色;

蓝色: 当地址映射区位于输出区, 无冲突时呈蓝色。

红色: 在输入区或输出区,不同命令占用同一字节地址,该字节区域呈红色。



对于位操作指令,以上色格显示含义同样适用。

单击输入输出区域方格,该方格对应字节的各个位显示是否被占用,如下图所示:



## 5.5 硬件通讯

硬件通讯菜单项如下:





## 5.5.1 串口配置

本软件自动扫描系统可用串口,并在串口列表中列出可用串口。修改完所有设置项后,按"确定"保存设置。 备注:除端口号以外,其余参数为固定数值:115200,8,N,1。



## 5.5.2 上载配置

选择上载配置,将网关配置信息从设备上载到软件中,显示界面如下:







备注:在上载配置之前,请先检查"串口配置"中端口号是否为正在使用的串口。

## 5.5.3 下载配置

选择下载配置,将配置好的网关信息下载到网关设备,显示界面如下:



备注 1: 在下载配置之前,请先检查"串口配置"中端口号是否为正在使用的串口。

备注 2: 在下载之前,请先确认所有的配置已经完成。

## 5.6 加载和保存配置

## 5.6.1 保存配置工程

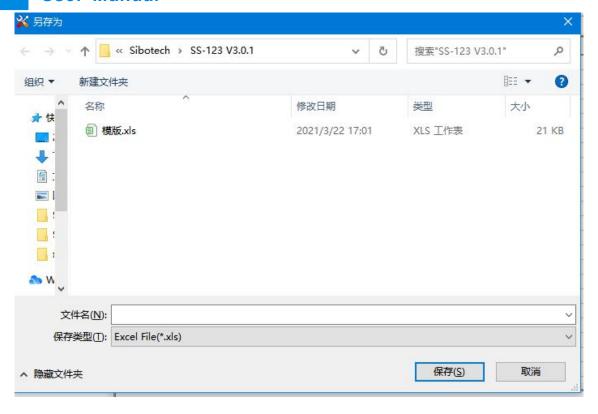
选择"保存",可以将配置好的工程以.chg 文档保存。





## 5.6.2 加载配置工程

选择"打开",可以将以保存的.chg 文件打开。

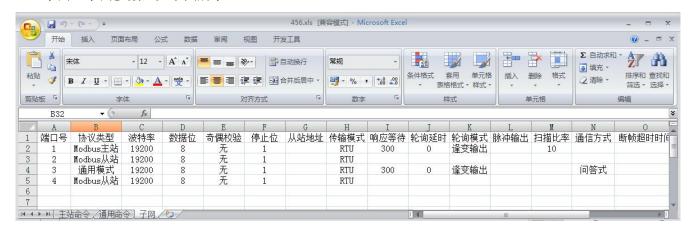



## 5.7 EXCEL 文档输出

Excel 配置文档输出有助于用户查看相关配置。

选择文档输出 ,将配置信息输出到 Excel 文档保存,选择合适的路径,如下所示:






双击打开.xls 文件,分为"主站命令","通用命令","子网"三个部分。

主站命令: Modbus 命令列表

通用命令:通用模式命令列表

子网:子网参数,如下图所示:





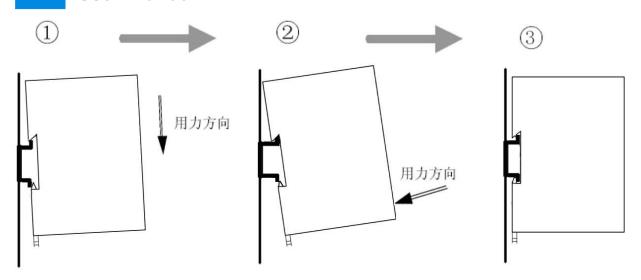
# 六、安装

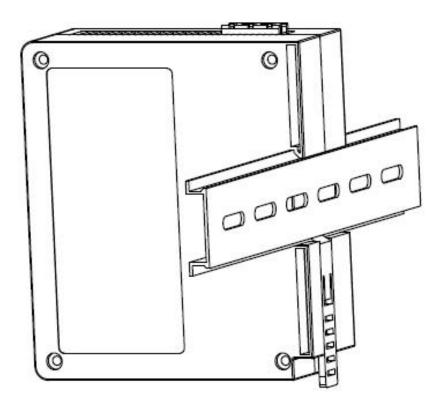
## 6.1 机械尺寸

尺寸: 40mm (宽) ×125mm (高) ×110mm (深) [不包括导轨连接器]

110

125


## 6.2 安装方法


0

35mm DIN 导轨安装











## 七、运行维护及注意事项

- ◆ 模块需防止重压,以防面板损坏。
- ◆ 模块需防止撞击,有可能会损坏内部器件。
- ◆ 供电电压控制在说明书的要求范围内,以防模块烧坏。
- ◆ 模块需防止进水,进水后将影响正常工作。
- ◆ 上电前请请检查接线,有无错接或者短路。





# 八、修订记录

| 时间        | 修订版本 | 修改内容                                                                                   |  |  |  |  |  |  |
|-----------|------|----------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 2018-1-2  | A    | 1. 作为 Modbus 主站和通用模式问答式,增加输入数据保持和设置<br>超时清零次数功能;<br>2. 增加 4800 波特率;<br>3. 配置软件的界面截图更新。 |  |  |  |  |  |  |
| 2018-8-8  | В    | 删除"仅限于"                                                                                |  |  |  |  |  |  |
| 2021-8-12 | A    | 增加 Modbus 从站模式下,03/04 功能码可选被主站访问,及对应的寄存器起始地址手动可设;                                      |  |  |  |  |  |  |

上海泗博自动化技术有限公司 SiboTech Automation Co., Ltd. 技术支持热线: 021-3126 5138 E-mail: support@sibotech.net

-man. support@stootech.net www.sibotech.net





## 附录: Modbus 协议

### Modbus-RTU 协议:

说明:与本产品通讯的设备必须带有 Modbus 接口,同时设备 Modbus 协议必须符合下面的规定,本公司提供用户定制服务。

#### 1.协议概述

物理层: 传输方式: RS485

通讯地址: 0-247

通讯波特率: 可设定

通讯介质: 屏蔽双绞线

传输方式: 主从半双工方式。

协议在一根通讯线上使用应答式连接(半双工),这意味着在一根单独的通讯线上信号

沿着相反的两个方向传输。首先,主计算机的信号寻址到一台唯一的终端设备(从机),然后,在相反的方向上终端设备发出的应答信号传输给主机。

协议只允许在主计算机和终端设备之间,而不允许独立的设备之间的数据交换,这就不会在使它们初始化时占据通讯线路,而只响应到达本机的查询信号。

### 一个数据帧格式:

1位起始位,8位数据,1位停止位。

一个数据包格式

| 地址     | 功能码    | 数据         | 校验码     |
|--------|--------|------------|---------|
| 8-Bits | 8-Bits | N x 8-Bits | 16-Bits |

协议详细定义了校验码、数据序列等,这些都是特定数据交换的必要内容。

当数据帧到达终端设备时,它通过一个简单的"口"进入寻址到的设备,该设备去掉

数据帧的"信封"(数据头),读取数据,如果没有错误,就执行数据所请求的任务,然后,它将自己生成的数据加入到取得的"信封"中,把数据帧返回给发送者。返回的响应数据中包含了以下内容:终端从机地址(Address)、被执行了的命令(Function)、执行命令生成的被请求数据(Data)和一个校验码(Check)。发生任何错误都不会有成功的响应。

### 地址 (Address) 域

地址域在帧的开始部分,由 8 位(0~255)组成,这些位标明了用户指定的终端设备 的地址,该设备将接收来自与之相连的主机数据。每个终端设备的地址必须是唯一的,仅仅被寻址到的终端 会响应包含了该地址的查询。当终端发送回一个响应,响应中的从机地址数据便告诉了主机哪台终端正与之 进行通信。

#### 功能 (Function) 域

功能域代码告诉了被寻址到的终端执行何种功能。表 1-1 列出了所有的功能码、它们的意义及它们的初始功能。





### 表 1-1 功能码

| 代码 | 意义     | 行为                  |  |  |  |
|----|--------|---------------------|--|--|--|
| 03 | 读数据    | 获得一个或多个寄存器的当前二进制值   |  |  |  |
| 06 | 预置单寄存器 | 放置一个特定的二进制值到一个单寄存器中 |  |  |  |
| 16 | 预置多寄存器 | 放置特定的二进制值到一系列多寄存器中  |  |  |  |

### 数据域

数据域包含了终端执行特定功能所需要的数据或者终端响应查询时采集到的数据。这 些数据的内容可能是数值、参考地址或者极限值。例如:功能域码告诉终端读取一个寄存器,数据域则需要 指明从哪个寄存器开始及读取多少个数据,内嵌的地址和数据依照类型和从机之间的不同能力而有所不同。

#### 错误校验域

该域允许主机和终端检查传输过程中的错误。有时,由于电噪声和其它干扰,一组数据在从一个设备传输到另一个设备时在线路上可能会发生一些改变,出错校验能够保证主机或者终端不去响应那些传输过程中发生了改变的数据,这就提高了系统的安全性和效率,出错校验使用了16位循环冗余的方法。

[注] 发送序列总是相同的 - 地址、功能码、数据和与方向相关的出错校验。

#### 错误检测

循环冗余校验(CRC)域占用两个字节,包含了一个 16 位的二进制值。CRC 值由传送设备计算出来,然后附加到数据帧上,接收设备在接收数据时重新计算 CRC 值,然后与接收到的 CRC 域中的值进行比较,如果这两个值不相等,就发生了错误。

CRC 运算时,首先将一个 16 位的寄存器预置为全 1,然后连续把数据帧中的 8 位字节与该寄存器的当前值进行运算,仅仅每个字节的 8 个数据位参与生成 CRC,起始位和终止位以及可能使用的奇偶位都不影响 CRC。

在生成 CRC 时,每个 8 位字节与寄存器中的内容进行异或,然后将结果向低位移位,高位则用"0"补充,最低位(LSB)移出并检测,如果是 1,该寄存器就与一个预设的固定值进行一次异或运算,如果最低位为 0,不作任何处理。

上述处理重复进行,知道执行完了 8 次移位操作,当最后一位(第 8 位)移完以后,下一个 8 位字节与寄存器材的当前值进行异或运算,同样进行上述的另一个 8 次移位异或操作,当数据帧中的所有字节都作了处理,生成的最终值就是 CRC 值。

生成一个 CRC 的流程为:

预置一个 16 位寄存器为 0FFFFH (全 1), 称之为 CRC 寄存器。

把数据帧中的第一个 8 位字节与 CRC 寄存器中的低字节进行异或运算,结果存回 CRC 寄存器。将 CRC 寄存器向右移一位,最高位填以 0,最低位移出并检测。

如果最低位为 0: 重复第三步(下一次移位)。

如果最低位为 1:将 CRC 寄存器与一个预设的固定值(0A001H)进行异或运算。

重复第三步和第四步直到8次移位。这样处理完了一个完整的八位。

重复第2步到第5步来处理下一个八位,直到所有的字节处理结束。

最终 CRC 寄存器得值就是 CRC 的值。

### 2. 应用层功能详解

第一章已经简述了协议和数据帧,使用此软件的程序员可以使用下述的方法以便通过协议正确的建立他





### SS-430B 智能串口数据交换器

### **User Manual**

们的特定应用程序。

本章所述协议将尽可能的使用如图 2-1 所示的格式,(数字为 16 进制)。

| 地址  | 功能码 | 变量起始地 | 变量起始  | 变量的个 | 变量的个 | 校对验码 | 校对验码 |
|-----|-----|-------|-------|------|------|------|------|
|     |     | 址高字节  | 地址低字节 | 数高字节 | 数低字节 | 低字节  | 高字节  |
| 03H | 03H | 00H   | 01H   | 00H  | 03H  | 55H  | Е9Н  |

图 2-1 协议例述

读数据(功能码03)

查询

图 2-2 的例子是从 03 号从机读 3 个采集到的基本数据 U1,U2,U3,U1 的地址为 0001H,U2 的地址为 0002H,U3 的地址为 0003H,

| 地址  | 功能码 | 变量起始  | 变量起始  | 变量的个 | 变量的个 | 校对验码 | 校对验码 |
|-----|-----|-------|-------|------|------|------|------|
|     |     | 地址高字节 | 地址低字节 | 数高字节 | 数低字节 | 低字节  | 高字节  |
| 03H | 03H | 00H   | 01H   | 00H  | 03H  | 55H  | Е9Н  |

### 图 2-2 读 Uca 和 Ia 的查询数据帧

响应

响应包含从机地址、功能码、数据的数量和 CRC 错误校验。

图 2-3 的例子是读取 U1,U2,U3 的响应。

| 地址  | 功能<br>码 | 变量<br>的总 | 变量<br>值高 | 变量<br>值低 | 变量<br>值高 | 变量<br>值低 | 变量<br>值高 | 变量<br>值低 | 校对<br>验码 | 校对<br>验码 |
|-----|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|     |         | 字节       | 低字       | 高字       |
|     |         | 数        |          |          |          |          |          |          | 节        | 节        |
| 03H | 03H     | 06H      | 01H      | 7CH      | 01H      | 7DH      | 01H      | 7CH      | F9H      | 9BH      |

### 图 2-3 读 U1,U2,U3 的响应数据帧

### 2. 2 预置多寄存器 (功能码 10)

杳询

功能码 10H 允许用户改变多个寄存器的内容,设备可从任何地址开始设置最多 16 个变量的值。控制器是以动态扫描方式工作的,任何时刻都可以改变寄存器内容。

图 2-4 是修改 3 号从站设备的负载监控 1 和负载监控 2 的动作及延时时间的设定值,其中负载监控 1 的动作设定值地址为 2AH,延时时间的设定值为 2BH,负载监控 2 的动作设定值地址为 2CH,延时时间的设定值为 2DH。

| 地址  | 功能  | 变量   | 变量  | 变量  | 校对  | 校对  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|
|     | 码   | 起始  | 起始  | 的个  | 的个  | 的总  | 值高  | 值低  | 值高  | 值低  | 值高  | 值低   | 值高  | 值低  | 验码  | 验码  |
|     |     | 地址  | 地址  | 数高  | 数低  | 字节   | 字节  | 字节  | 低字  | 高字  |
|     |     | 高字  | 低字  | 字节  | 字节  | 数   |     |     |     |     |     |      |     |     | 节   | 节   |
|     |     | 节   | 节   |     |     |     |     |     |     |     |     |      |     |     |     |     |
| 03H | 10H | 00H | 2AH | 00H | 04H | 08H | 07H | D0H | 00H | 0AH | 07H | 0D0H | 00H | 0AH | 25H | 7CH |

图示 2-4 修改负载监控 1 和负载监控 2 的动作值及延时时间的设定值响应





## SS-430B 智能串口数据交换器

### **User Manual**

| Ð | 也址 | 功能码 | 变量起始  | 变量起始  | 变量的个 | 变量的个 | 校对验码 | 校对验码 |
|---|----|-----|-------|-------|------|------|------|------|
|   |    |     | 地址高字节 | 地址低字节 | 数高字节 | 数低字节 | 低字节  | 高字节  |
| Γ | 03 | 10H | 00H   | 2AH   | 00H  | 04H  | EBH  | 8DH  |

图示 2-5 修改负载监控 1 和负载监控 2 的动作值及延时时间的设定值的响应

### 2. 3 预置单寄存器 (功能码 06)

查询

功能码 06 允许用户改变单个寄存器的内容, DAE 系统内部的任何单寄存器都可以使用此命令来改变其值。 既然仪器是以动态扫描方式工作的,任何时刻都可以改变单寄存器内容。

下面的例子是请求 03 号从机修改过载动作设定值 Ir1, Ir1 地址是 002EH.

| 地址  | 功能码 | 变量起始  | 变量起始  | 变量值 | 变量值低 | 校对验码 | 校对验码 |
|-----|-----|-------|-------|-----|------|------|------|
|     |     | 地址高字节 | 地址低字节 | 高字节 | 字节   | 低字节  | 高字节  |
| 03H | 06H | 00H   | 2EH   | 07H | 0D0H | EBH  | 8DH  |

图示 2-6 修改过载动作设定值 Irl

响应

对于预置单寄存器请求的正常响应是在寄存器值改变以后将接收到的数据传送回去。

|   | 地址  | 功能码 | 变量起始  | 变量起始  | 变量值高 | 变量值低 | 校对验码 | 校对验码 |
|---|-----|-----|-------|-------|------|------|------|------|
|   |     |     | 地址高字节 | 地址低字节 | 字节   | 字节   | 低字节  | 高字节  |
| ſ | 03H | 06H | 00H   | 2EH   | 07H  | 0D0H | EBH  | 8DH  |

图示 2-7 图示 2-6 修改过载动作设定值 Ir1

